ADE7759
ALIASING EFFECTS
MAXIMUM
OUTPUT
IMPEDANCE
6k
SAMPLING
LOAD = 10 A
REF IN/OUT
IMAGE
FREQUENCIES
FREQUENCY
PTAT
60 A
1.7k
2.42V
2.5V
12.5k
0
2
447
FREQUENCY – kHz
894
12.5k
Figure 21. ADC and Signal Processing in Channel 1
For a di/dt sensor such as a Rogowski coil, however, the sensor
has 20 dB per decade gain. This will neutralize the –20 dB per
decade attenuation produced by this simple LPF and nullifies
12.5k
12.5k
REFERENCE INPUT
TO ADC CHANNEL 1
(RANGE SELECT)
2.42V, 1.21V, 0.6V
the antialias filter. Therefore, when using a di/dt sensor, mea-
sures should be taken to offset the 20 dB per decade gain coming
from the di/dt sensor and produce sufficient attenuation to
eliminate any aliasing effect. One simple approach is to cascade
two RC filters to produce –40 dB per decade attenuation. The
Figure 22. ADC and Reference Circuit Output
The REF IN/OUT pin can be overdriven by an external source,
e.g., an external 2.5 V reference. Note that the nominal refer-
ence value supplied to the ADCs is now 2.5 V not 2.42 V. This
has the effect of increasing the nominal analog input signal
transfer function for a cascaded filter is the following:
range by 2.5/2.42
100% = 3%, or from 0.5 V to 0.5165 V.
H ( s ) =
1 + sR 1 C 1 + sR 2 C 2 + sR 1 C 2 + s R 1 C 1 R 2 C 2
Code ( ADC ) = 3 . 0492 ×
× 262 , 144
1
2
where R 1 C 1 represents the RC used in the first stage of the
cascade and R 2 C 2 in that of the second stage. The s 2 term in the
transfer function produces a –40 dB/decade attenuation. Note
that to minimize the measurement error, especially at low power
factor, it is important to match the phase angle between the
voltage and the current channel. The small phase mismatch in
the external antialias filter can be corrected using the phase calibra-
tion register (PHCAL[7:0])—see Phase Compensation section .
ADC Transfer Function
Below is an expression which relates the output of the LPF in
the sigma-delta ADC to the analog input signal level. Both ADCs
in the ADE7759 are designed to produce the same output code
for the same input signal level.
V IN
V REF
Therefore, with a full-scale signal on the input of 0.5 V and an
internal reference of 2.42 V, the ADC output code is nominally
165,151 or 2851Fh. The maximum code from the ADC is
± 262,144, which is equivalent to an input signal level of ± 0.794 V.
However, for specified performance it is not recommended that the
full-scale input signal level of 0.5 V be exceeded.
Reference Circuit
Shown in Figure 22 is a simplified version of the reference out-
put circuitry. The nominal reference voltage at the REF IN/OUT
pin is 2.42 V. This is the reference voltage used for the ADCs in
the ADE7759. However, Channel 1 has three input range selec-
tions, which are selected by dividing down the reference value
used for the ADC in Channel 1. The reference value used for
Channel 1 is divided down to 1/2 and 1/4 of the nominal value
by using an internal resistor divider, as shown in Figure 22.
REV. A
The internal voltage reference on the ADE7759 has a tempera-
ture drift associated with it—see ADE7759 Specifications section
for the temperature coefficient specification (in ppm ° C). The
value of the temperature drift varies slightly from part to part.
Since the reference is used for the ADCs in both Channel 1 and 2,
any x% drift in the reference will result in 2x% deviation of the
meter reading. The reference drift resulting from temperature
changes is usually very small, and it is typically much smaller
than the drift of other components on a meter. However, if
guaranteed temperature performance is needed, one needs to
use an external voltage reference. Alternatively, the meter can be
calibrated at multiple temperatures. Real-time compensation
can be achieved easily using the on-chip temperature sensor.
CHANNEL 1 ADC
Figure 23 shows the ADC and signal processing chain for Chan-
nel 1. In waveform sampling mode, the ADC outputs a signed
twos complement 20-bit dataword at a maximum of 27.9 kSPS
(CLKIN/128). The output of the ADC can be scaled by ± 50%
to perform an overall power calibration or to calibrate the ADC
output. While the ADC outputs a 20-bit twos complement
value, the maximum full-scale positive value from the ADC is
limited to 40,000h (+262,144 decimal). The maximum full-
scale negative value is limited to C0000h (–262,144 decimal). If
the analog inputs are overranged, the ADC output code will
clamp at these values. With the specified full-scale analog input
signal of 0.5 V (or 0.25 V or 0.125 V—see Analog Inputs sec-
tion), the ADC will produce an output code that is approximately
63% of its full-scale value. This is illustrated in Figure 23. The
diagram in Figure 23 shows a full-scale voltage signal being
applied to the differential inputs V1P and V1N. The ADC
output swings between D7AE1h (–165,151) and 2851Fh
(+165,151). This is approximately 63% of the full-scale value
40,000h (262,144). Overranging the analog inputs with more
than 0.5 V differential (0.25 V or 0.125 V, depending on
Channel 1 full-scale selection) will cause the ADC output to
increase towards its full-scale value. However, for specified
operation, the differential signal on the analog inputs should
not exceed the recommended value of 0.5 V.
–17 –
相关PDF资料
EVAL-ADE7762EBZ BOARD EVALUATION FOR ADE7762
EVAL-ADE7763ZEB BOARD EVALUATION FOR ADE7763
EVAL-ADE7816EBZ BOARD EVALUATION FOR ADE7816
EVAL-ADE7878EBZ BOARD EVAL FOR ADE7878
EVAL-ADE7880EBZ BOARD EVAL FOR ADE7880
EVAL-ADE7953EBZ BOARD EVAL FOR ADE7953
EVAL-ADF4002EBZ1 BOARD EVAL FOR ADF4002
EVAL-ADG788EBZ BOARD EVALUATION FOR ADG788
相关代理商/技术参数
EVAL-ADE7762EBZ 功能描述:BOARD EVALUATION FOR ADE7762 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:- 主要目的:电信,线路接口单元(LIU) 嵌入式:- 已用 IC / 零件:IDT82V2081 主要属性:T1/J1/E1 LIU 次要属性:- 已供物品:板,电源,线缆,CD 其它名称:82EBV2081
EVAL-ADE7763EB 制造商:Analog Devices 功能描述:EVALUATION BOARD DOCUMENTATION ADE7763 ENERGY METERING IC
EVAL-ADE7763ZEB 功能描述:BOARD EVALUATION FOR ADE7763 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADE7816EBZ 功能描述:BOARD EVALUATION FOR ADE7816 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADE7854EBZ 制造商:Analog Devices 功能描述:EVALUATION BOARDS - Boxed Product (Development Kits)
EVAL-ADE7858EBZ 制造商:AD 制造商全称:Analog Devices 功能描述:Poly Phase Multifunction Energy Metering IC with per Phase Active and Reactive Powers
EVAL-ADE7878EBZ 功能描述:BOARD EVAL FOR ADE7878 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PCI Express® (PCIe) 主要目的:接口,收发器,PCI Express 嵌入式:- 已用 IC / 零件:DS80PCI800 主要属性:- 次要属性:- 已供物品:板
EVAL-ADE7880EBZ 功能描述:BOARD EVAL FOR ADE7880 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:* 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- 主要目的:电源管理,电池充电器 嵌入式:否 已用 IC / 零件:MAX8903A 主要属性:1 芯锂离子电池 次要属性:状态 LED 已供物品:板